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Numerical modeling of thermoelectric coupling
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Abstract. A thermoelectric device creates a temperature gradient due to the applied voltage and produces a voltage
due to a temperature gradient. This thermoelectric coupling is referred to as the PELTIER-SEEBECK effect. We start
from the balance equations for a material with electric charge and deduce the constitutive equations necessary for
modeling. After insertion of the constitutive relations into the balance equations coupled nonlinear field equations
result. We implement and solve them by using open-source codes. A simulation of a thermoelectric device validates
the performed thermodynamically consistent continuum mechanics approach.
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1 GOVERNING EQUATIONS
In rational mechanics the balance equations are stated without further discussion. Unfortunately for balance equa-
tions including electromagnetic interactions many different formalisms exist, see [7, §286]. Even the MAXWELL
equations, which provide the connection between the electromagnetic fields, occur in various formulations, see [6]
and [3, §II]. Hence we present explicitly our derivation of the governing equations. We apply the EINSTEIN sum-
mation convention to all repeated indices and use a comma notation, ,i for partial derivatives in space, xi. We start
from the balance of (total) energy with energy density ρe and the balance of (linear) momentum with momentum
density ρvi written in (fixed) Cartesian coordinates:

ρe• − Fj,j − ρS = ρfLor.
i ve

i , ρv•

i − σji,j − ρfi = ρfLor.
i , (1)

respectively, where the flux of energy, Fi, as well as the specific supply term, S, need to be defined. The flux of
momentum, σji, is nothing else but CAUCHY’s stress. The supply term of momentum, fi, includes body forces
stemming from a potential such as gravitational forces. The production of energy is given by the product between
the velocity of a charged particle, ve

i , and the LORENTZ force density:

ρfLor.
i = ρzEi + �ijkJjBk , (2)

where z denotes the specific electric charge, ρ the mass density, and Ji the electric current. The motion of atomic
charged particles is difficult to measure. However, the electric current, Ji = ρzve

i , represents their motion in
macroscopic terms. Hence, the production term for total energy becomes

ρfLor.
i ve

i =
�
ρzEi + �ijkρzv

e
jBk

�
ve
i = ρzEiv

e
i = JiEi , (3)

since �ijk = −�jik leads to �ijkv
e
iv

e
j = 0. The total energy is the sum of internal and kinetic energies. By multiplying

the balance of momentum by vi we obtain the balance of kinetic energy. After subtracting it from the balance of
total energy we obtain the balance of internal energy:

ρu• −
�
Fj − σjivi

�
,j
− ρ(S − fivi) = JiEi + σjivi,j − ρfLor.

i vi . (4)
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The supply term of the internal energy is called the internal heating, r, and its flux term is known as the heat flux,
qi. By convention it is positive if the system gains energy. Hence:

−qj = Fj − σjivi , r = S − fivi . (5)

The production term can be rewritten by using Ji = ρzvi + Ji and the definition of the LORENTZ force density:

JiEi − ρfLor.
i vi = JiEi − (ρzEi + �ijkJjBk)vi = Ei(Ji − ρzvi)− �ijk(Jj + ρzvj)Bkvi =

= EiJi − �ijkJjBkvi = Jj(Ej + �jikviBk) .
(6)

The electric current measured on the moving body, Ji, will be defined by a constitutive equation. The electromotive
intensity, Ei = Ei + �ijkvjBk, allows us to rewrite the balance of internal energy as follows

ρu• + qi,i − ρr = JiEi + σjivi,j . (7)

For an unpolarized solid body the GIBBS equation reads

ρ du = ρT dη + eσijdεij , (8)

where the specific entropy, η, and the elastic part of stress, eσij , have been introduced. The stress tensor is additively
separated, σij = eσij +

dσij , into an elastic term, eσij , and into a dissipative term, dσij . We use a linearized strain
measure εij = 1/2(ui,j + uj,i) = u(i,j), where ui is the displacement field in space and time, which will be
computed from the balance of momentum. Then by inserting the GIBBS equation (8) into the balance of internal
energy (7) we obtain the balance of entropy:

ρη• +
�qi
T

�
,i
− ρ

r

T
= Σ , Σ = − qi

T 2
T,i +

Ji
T
Ei +

dσji

T
vi,j , (9)

where the entropy production, Σ, has to be positive according to the 2nd law of thermodynamics, Σ ≥ 0. Tensors
of different rank will not depend on each other—this principle is known as the CURIE principle. For simplicity
we neglect any viscous deformations in the continuum body, dσij = 0, and propose the following relations for an
isotropic material:

− qi
T 2

= λT,i + γEi ,
Ji
T

= βT,i + θEi . (10)

Since the 2nd law has to hold for any process:

− qi
T 2

T,i +
Ji
T
Ei ≥ 0 , λT,iT,i + (γ + β)T,iEi + θEiEi ≥ 0 , (11)

we conclude that:
λ ≥ 0 , γ + β = 0 , θ ≥ 0 . (12)

The second relation is referred to as ONSAGER’s relation.1 By renaming κ = λT 2, π = Tβ/ς , and ς = θT we
obtain

qi = −κT,i + ςπTEi , Ji = ςπT,i + ςEi . (13)

The constitutive equations are linear if all coefficients are constant, viz., the heat conduction parameter, κ, the electri-
cal conductivity, ς , and the thermoelectric coupling, π, are constants. For materials without thermoelectric coupling,
π = 0, we obtain the well-known laws of FOURIER and OHM. In every conductor even a small temperature gradient
induces an electric current—this phenomenon is called the SEEBECK effect and is used by thermocouples. The same
relation also results in a heat conduction due to an electric field—this effect is named after PELTIER.

Now by introducing the specific free energy, f = u− Tη, and by inserting it in the GIBBS equation we obtain:

df = −η dT + eσijv dεij ⇒ f = f (T, εij) , (14)

According to the equipresence principle the conjugated variables, η and eσij , depend on the same set of arguments
as the energy, so that they become

dη =
c

T
dT − m̃ijv dεij , d eσij = m̃ij dT + Cijkl dεkl , (15)

1In the literature the ONSAGER relation is motivated by atomistic arguments. Herein we reach the same conclusion by using thermodynamics.
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where we have readily used the so-called MAXWELL relations and the fact that the measurement of entropy is
realized by controlling the heat pumped into the system. For a more detailed outline of these steps we refer the
interested reader to [1, §5]. The specific heat capacity, c, is measured at a constant strain and the stiffness tensor,
Cijkl, is determined at a constant temperature. Such measurements are well-known in the literature, however, the
thermal stress coefficient, m̃ij , is difficult to determine. For a constant stress we obtain:

0 = m̃ij dT + Cijkl dεkl ⇒ m̃ij = −Cijkl
∂εkl
∂T

����
eσ

= −Cijklαkl , (16)

where the thermal expansion coefficient, αij , is known for many materials. For a linear material with constant
parameters, Cijkl, αij , we obtain the stress for an elastic material as well as the entropy after an integration from
the stress- and entropy-free states at ε = 0, T = Tref. to the present ones:

η = c ln
� T

Tref.

�
+ Cijklαklvεij , σij =

eσij = −Cijklαkl(T − Tref.) + Cijklεkl . (17)

For the electromagnetic fields, namely the electric field, Ei, and the magnetic flux (areal) density, Bi, we declare two
potentials, viz., the scalar potential φ in V =̂ J/C, and the vector potential Ai in Wb/m =̂T m =̂ J/(A m), as follows

Ei = −φ,i −
∂Ai

∂t
, Bi = �ijkAk,j . (18)

For a conductor the scalar potential, φ, is calculated by satisfying the balance of (electric) charge:

Ji,i = 0 , (19)

under the assumption that no static load occurs, z = 0. In other words, we assume that the number of charged
particles flowing into the material from one end flow out through the other end simultaneously, such that the net
charge remains zero. In order to calculate the vector potential, Ai, we use one of MAXWELL’s equations:

−∂Di

∂t
+ �ijkHk,j = Ji , (20)

where the charge potential, Di, and current potential, Hi, are given by the MAXWELL-LORENTZ aether relations:

Di = ε0Ei , Hi =
1

µ0
Bi , ε0 = 8.85 · 10−12 A s / (V m) , µ0 = 12.6 · 10−7 V s / (A m) . (21)

2 COMPUTATION
The objective is to compute the displacement ui from Eq. (1)2, the (absolute) temperature T from Eq. (9), and
the scalar and vector potentials, φ and Ai, from Eqs. (19) and (20), respectively. Since we model a solid body a
formulation in the LAGRANGEan configuration is more beneficial. For simplicity we approximate the deformation
gradient as the identity, in other words, we allow only small deformations. Then the governing equations remain
the same and the partial derivatives are in the space of initial positions of particles. For a numerical computation we
generate the weak form with the following steps:

• Discretize in time by using EULER backwards finite difference method, for example vi =
∂ui

∂t
=

ui − u0
i

Δt
,

• Multiply the governing equations with test functions, δui, δT , δφ, δAi, and integrate over one finite element,

• Bring them to the same unit (herein we choose the unit of energy in J) and sum them up,

• Employ partial integrations in order to reduce the order in space derivatives in each term.

After applying these steps we obtain:

Fu =

�

Ω

�
ρ
vi − v0i
Δt

δui + σjiδui,j − ρfiδui − ρfLor.
i δui

�
dv −

�

∂Ω

σjiδuinj da ,

FT =

�

Ω

�
ρ(η − η0)δT −Δt

qi
T
δT,i −Δt

ρr

T
δT +Δt

qi
T 2

T,iδT −Δt
Ji
T
EiδT −Δt

dσji

T
vi,jδT

�
dv+

+

�

∂Ω

Δt
qi
T
δTni da , Fφ =

�

B0

�
−ΔtJiδφ,i

�
dV +

�

∂B0

ΔtJiδφNi dA ,

FA =

�

Ω

�
− Di −D0

i

Δt
δAi − �ijkHkδAi,j − JiδAi − ρ0zviδAi

�
dv +

�

∂Ω

�ijkHkδAinj da ,

(22)
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where Form = Fu + FT + Fφ + FA is a nonlinear integral form. We choose the functional space for the primitive
variables ui, T , φ, Ai and their corresponding test functions δui, δT , δφ, δAi from the same SOBOLEV space as
usual in the GALERKIN-type finite element method. We program and solve in Python by using the novel open-
source packages developed under the FEniCS project, see [5].

Consider a wire with a rectangular cross section made of chromel (nickel-chromium alloy). This wire works as
a thermocouple (type E), such that a temperature difference at its both ends is measured as a (scalar) potential
difference. We clamp the wire of length � = 0.1m at one end and increase the ambient temperature at the other end
linearly in time, see the results in Figs. 1.

Figure 1: Distributions of primitive variables, T , ui, φ, Ai, colors indicate the magnitude, the deformation is 5000
times enlarged for a better visualization.

3 CONCLUSIONS
We have presented a multiphysical phenomenon well-known from thermocouples. As a consequence of the SEE-
BECK effect different temperatures at both ends of a wire produce a potential difference leading to an electric current
in a closed circuit. Hence, by measuring the potential difference in V we can detect the temperature. For the com-
putation of this phenomenon all necessary constitutive equations have been derived by using thermodynamics. The
weak form is solved by using the finite element method in space and the finite difference method in time. In order
to encourage further studies we publish the code in [2] under GNU Public license as in [4].
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